The generator matrix

 1  0  0  1  1  1 X+2  X  1  1  X  1  1  2  1  1  0  1  1  0  X  1  1  X  1 X+2  1 X+2  X  1  1 X+2  2  1  1  1  0  1  1  X  0  2  1  2  1  2  1  1  1  0  1  1 X+2  1  X  1  X  0  1  1  X  1  1  2  0  0 X+2 X+2  1  X  1  2  X
 0  1  0  0  3 X+1  1  2  2 X+3  1  2  1  1  0  2  0  1  3  1  1 X+2  X  X X+1  1 X+3  X  1 X+2  X  1  1 X+3 X+1 X+2 X+2  X  1  1  1  1  0  1  0 X+2  3  2 X+1  1 X+2  X  1  2  1  3 X+2  1  2 X+3  1  1  2  1  0  1  1  1  3  0 X+1  1  1
 0  0  1  1  3  2  3  1  0 X+1  0 X+3  2  1  2 X+3  1  3  X X+2  1  X X+3  1 X+1 X+3 X+2  1 X+2  X X+1 X+3 X+1  0  X X+2  1  1 X+3  X  1 X+3  X  2  X  1 X+1 X+3  3  X  2  0  2  2  2 X+2  1  X  3  0 X+2  0  1  1  1 X+2 X+2 X+2 X+3 X+2 X+3 X+1  2
 0  0  0  X  X  0  X  X  X  0  X  0  X  0  2  2  2  0  0  0  0 X+2 X+2  X X+2  X X+2 X+2  X  X  X  0  X  X  2  2  0  0  2  2 X+2  0  2  X X+2 X+2 X+2  X X+2 X+2 X+2  0  2 X+2 X+2  X  0  X  2  2  2  2  0  2  X  2  0 X+2  0 X+2  2  0  2

generates a code of length 73 over Z4[X]/(X^2+2,2X) who�s minimum homogenous weight is 68.

Homogenous weight enumerator: w(x)=1x^0+186x^68+124x^69+384x^70+132x^71+365x^72+92x^73+187x^74+64x^75+161x^76+42x^77+101x^78+24x^79+59x^80+20x^81+46x^82+4x^83+43x^84+10x^85+1x^86+1x^88+1x^90

The gray image is a code over GF(2) with n=292, k=11 and d=136.
This code was found by Heurico 1.16 in 0.369 seconds.